Fast Gauss transforms with complex parameters using NFFTs

نویسندگان

  • Stefan Kunis
  • Daniel Potts
  • Gabriele Steidl
چکیده

at the target knots yj ∈ [−14 , 1 4 ], j = 1, . . . ,M , where σ = a + ib, a > 0, b ∈ R denotes a complex parameter. Fast Gauss transforms for real parameters σ were developed, e.g., in [15, 8, 9]. In [12], we have specified a more general fast summation algorithm for the Gaussian kernel. Recently, a fast Gauss transform for complex parameters σ with arithmetic complexity O(N log N + M) was introduced by Andersson and Beylkin [1]. In this paper, we show how our general fast summation algorithm developed in [11, 12, 6] can be specified for the Gaussian kernel with complex parameter σ to obtain a fast Gauss transform with arithmetic complexity O(N +M). This results in a simpler algorithm than those in [1] with competitive performance in practice. We prove error estimates concerning the dependence of the computational speed on the desired accuracy and the parameters a and |σ|. The heart of our algorithm is the discrete Fourier transform for non equispaced knots (NDFT), i.e., the evaluation of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fast Gauss transform with complex parameters q

We construct a fast method, OðN logNÞ, for the computation of discrete Gauss transforms with complex parameters, capable of dealing with unequally spaced grid points. The method is based on Fourier techniques, and in particular it makes use of a modified unequally spaced fast Fourier transform algorithm, in combination with previously suggested divide and conquer strategies for ordinary fast Ga...

متن کامل

Fast Ewald summation under 2d- and 1d-periodic boundary conditions based on NFFTs

Ewald summation has established as basic element of fast algorithms evaluating the Coulomb interaction energy of charged particle systems in three dimensions subject to periodic boundary conditions. In this context particle mesh routines, as the P3M method, and the P2NFFT, which is based on nonequispaced fast Fourier transforms (NFFT), should be mentioned. These methods treat the problem effici...

متن کامل

Algorithms for Unequally Spaced Fast Laplace Transforms

Vol. 1 (2013) pp. 37-46. ALGORITHMS FOR UNEQUALLY SPACED FAST LAPLACE TRANSFORMS FREDRIK ANDERSSON⇤ Abstract. We develop fast algorithms for unequally spaced discrete Laplace transforms with complex parameters, which are approximate up to prescribed choice of computational precision. The algorithms are based on modifications of algorithms for unequally spaced fast Fourier transforms using Gauss...

متن کامل

Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)

This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds.     The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2006